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1. Introduction

Hawking’s semiclassical analysis of the black hole radiation suggests that most information

about initial states is shielded behind the event horizon and will not back to the asymptotic

region far from the evaporating black hole [1]. This means that the unitarity is violated by

an evaporating black hole. However, this conclusion has been debated by many authors for

three decades [2 – 4]. It is closely related to the information loss paradox, which states the

question of whether the formation and subsequent evaporation of a black hole is unitary.

One of the most urgent problems in the black hole physics is the lack of resolution of

the unitarity issue. Moreover, a complete description of the final stage of the black hole

evaporation is important but is still quite unknown. In order to reach the solution to these

problems, we have to use quantum gravity. Although two leading candidates for quantum

gravity are the string theory and the loop quantum gravity, we need to introduce another

approach that provides a manageable form of the quantum gravity effect. The holographic

principle could serve such a purpose because it includes the effect of the quantum mechanics

and gravity [5, 6].

Also it is interesting to consider the generalized uncertainty principle (GUP) since the

Heisenberg uncertainty principle may not be satisfied when quantum gravitational effects

become important [7 – 10]. We note that the GUP provides the minimal length scale and

thus modifies the thermodynamics of a singular black hole at the Planck scale only.

On the other hand, even though the noncommutativity also provides the minimal

length scale [7], this provides a totally different black hole: noncommutative black hole

(NBH) [11]. This is similar to the nonsingular black hole with two horizons [12]. We think

that it is very important to study the effects of noncommutativity on the terminal phase of

black hole evaporation. In case of the Schwarzschild black hole, the temperature diverges

and a large curvature state is reached. However, it was shown that the noncommutativity

can cure this pathological short distance behavior [13].

In this work, we first study thermodynamic properties of the NBH thoroughly and

then investigate its evaporation process. Especially, we wish to point out the connection

between thermodynamic approach and evaporation process.
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The organization of this work is as follows. We study the thermodynamics of the NBH

in section II. Section III is devoted to investigation of the evaporation process of the NBH

by introducing the noncommutativity-corrected Vaidya metric. Finally, we discuss and

summarize our results in section IV.

2. Thermodynamics of noncommutative black hole

It was shown that noncommutativity eliminates point-like structures in favor of smeared

objects in flat spacetime [11]. The effect of smearing is implemented by substituting the

Dirac-delta function with Gaussian distribution of the width
√

θ. This is a coordinate

coherent approach to the noncommutativity with planck units of c = ~ = G = 1. For this

purpose, the mass density is chosen as

ρθ(r) =
M

(4πθ)
3

2

exp

(

− r2

4θ

)

, (2.1)

which plays the role of a matter source, and the total mass M of the source is diffused

throughout a region of linear size
√

θ. θ comes from the noncommutator of [xµ, xν ] =

iθµν with θµν = θ diag[ε1, · · · , εD/2] [14 – 17]. We note that the constancy of θ leads

to a consistent treatment of Lorentz invariance and unitarity [18]. Eq. (2.1) provides a

self-gravitating droplet of anisotropic fluid whose energy-momentum tensor is given by

T µ
ν = diag[−ρθ, pr, p⊥, p⊥] with the radial pressure pr = −ρθ and tangential pressure

p⊥ = −ρθ − 1

2
r∂rρθ. Solving the Einstein equation Gµν = 8πTµν leads to the solution

ds2 ≡ gµνdxµdxν = −F (r)dt2 + F (r)−1dr2 + r2dΩ2
2. (2.2)

Here the metric function F (r) is given by

F (r) =

[

1 − 4M

r
√

π
γ

(

3

2
,
r2

4θ

)

]

, (2.3)

where the lower incomplete gamma function is defined by

γ

(

3

2
,
r2

4θ

)

≡
∫ r

2

4θ

0

t
1

2 e−tdt. (2.4)

Note that when r goes to infinity, γ approaches to
√

π/2. From the condition of g00(rs) = 0,

the event horizon can be found as

rs =
4M√

π
γ

(

3

2
,
r2
s

4θ

)

≡ 4M√
π

γs (2.5)

which provides the mass M(rs) as a function of the horizon radius rs

M(rs) =

√
πrs

4γs
. (2.6)

In the large radius of r2
s/4θ À 1(Hawking regime: rs ' 2M), the effect of noncommuta-

tivity can be neglected. On the other hand, at the short distance of r2
s/4θ ' O(1) (critical
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Figure 1: The solid line: mass M(rs) as a function of the black hole radius rs. The dashed line

is the Schwarzschild case. Four horizontal lines are M = 8.0(= Mi), 2.4(= Mm), 1.9(= M0), and

1.0(< M0) from top to bottom. The mass Mi is introduced to be the initial mass (•) and M0(•) is

the end point for an evaporation process (→). For M ≥ M0, rC(≤ r0) describes the inner horizon,

while rs(≥ r0) represents the outer horizon. de Sitter space appears for 0 ≤ rs < rC .

regime), one expects to find significant changes due to the spacetime noncommutativity.

We note that although the metric in eq. (2.2) gives rise to asymptotically Schwarzschild

spacetime, it is basically different from the Schwarzschild solution. This solution has two

parameters M and θ, in compared with one parameter M for the Schwarzschild case.

Hereafter we choose θ = 1 for numerical computations without any loss of generality. As is

shown figure 1, two masses of M(rs) and MSch = rs/2 are different at the critical regime but

the two are the same in the Hawking regime. A minimum mass of M(r0) = M0 = 1.9
√

θ

is determined from the condition of dM/drs = 0.

For definiteness, we consider three different types: 1) For M > M0(M = Mi = 8.0
√

θ),

two distinct horizons appear with the inner (Cauchy) horizon rC and the outer (event)

horizon rs(rC ≤ r0 ≤ rs). 2) In case of M = M0, one has the degenerate horizon at

r0 = 3.0
√

θ, which corresponds to the extremal black hole. 3) For M < M0(M = 1.0
√

θ),

there is no horizon. In case of M À M0, the inner horizon shrinks to zero, while the outer

horizon approaches the Schwarzschild radius rs = 2M . Hence the noncommutative black

hole solution looks like the nonsingular solution known as the de Sitter-Schwarzschild black

hole1 [12]. Here ρθ connects the de Sitter vacuum in the origin with the Minkowski vacuum

at infinity.

The black hole temperature in the noncommutative geometry can be calculated to be

TNBH(rs) ≡ − 1

4π

[

dg00

dr

]

r=rs

=
1

4πrs

[

1 − r3
s

4θ
3

2

e−
r
2
s

4θ

γs

]

. (2.7)

For r2
s/4θ À 1, one recovers the Hawking temperature of the Schwarzschild black hole

TH =
1

4πrs
. (2.8)

1At this point, one does not confuse this noncommutative black hole with the Schwarzschild-de Sitter

black hole with rs ≤ rC , which corresponds to a singular black hole inside the cosmological horizon [19].
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Figure 2: The solid line: temperature TNBH as a function of the black hole radius rs. The

dashed line is the Schwarzschild case. The horizontal dashed line denotes the initial temperature

Ti = 0.005(•) and T = 0(•) represents the end point for an evaporation process (→).

Therefore, at the initial stage of Hawking radiation, the black hole temperature increases

as the horizon radius decreases. It is important to investigate what happens as rs →
√

θ.

In the commutative case, TH diverges and this puts limit on the validity of the conventional

description of Hawking radiation. Against this scenario, the temperature TNBH includes

noncommutative effects, which are relevant at short distance comparable to
√

θ [11]. As

is shown in figure 2, the temperature of the NBH grows during its evaporation until it

reaches to the maximum value TNBH = Tm = 0.015 at rs = rm = 4.76(Mm = 2.4) and

then falls down to zero at rs = r0 which the extremal black hole appears with TNBH = 0.

As a result, the noncommutativity restricts evaporation process to a planck-size remnant,

similar to the GUP inspired black hole [9]. In the region of r < r0, there is no black hole

for M < M0 and thus the temperature can not be defined. For M > M0, we have the inner

horizon but the observer at infinity does not recognize the presence of this horizon. Hence

we call this region as the forbidden region.

The entropy of the NBH can be obtained using the relation2

SNBH(rs) =

∫ M

M0

dM ′

TNBH(M ′)
=

∫ rs

r0

1

TNBH(r′)

(

dM ′

dr′

)

dr′. (2.9)

The numerical result of this integration is shown in figure 3. In this case we have zero

entropy for the extremal black hole at rs = r0. On the other hand, we have the area-law

behavior of SBH = πr2
s for the Schwarzschild black hole.

In order to check the thermal stability of the NBH, we have to know the heat capacity.

2In deriving eq. (2.9), we use the first-law of thermodynmics dM = TNBHdSNBH . The issue is the

lower bound of the integral. As was shown figure 1, we have two branches for M > M0. The inner branch

describes the inner cosmological horizon, while the outer branch shows the evolution of outer event horizon.

We note that the first-law of thermodynmics holds for the outer horizon, because the observer at infinity

does not recognize the inner horizon which is beyond the outer horizon. Furthermore, we have an unphysical

negative tempearture TNBH < 0 for rs < r0 [20]. Hence the proper lower bound is not M = 0 but M = M0.
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Figure 3: The solid line: entropy SNBH as a function of the black hole radius rs. The dashed line

is the Schwarzschild case.

The heat capacity of the NBH is given by

CNBH(rs) =
dM

dTNBH
=

(

dM

drs

)(

dTNBH

drs

)−1

(2.10)

and its variation is plotted in figure 4. Here we find a stable region of CNBH > 0 at

the critical regime. This means that the NBH is thermodynamically stable in the range

of r0 < rs < rm. The heat capacity becomes singular at rs = rm which corresponds

to the maximum temperature TNBH = Tm. This picture is consistent with our expecta-

tion.footnoteAt this stage, we raise a question: what extend is it physical that the ther-

modynamic process would pass through a point rs = rm where the specific heat goes from

being infinitely negative to infinitely positive and then down to a finite positive? We may

understand this picture from the analogy of the Hawking-Page phase transition in the AdS

black hole [21, 22]. In the Hawking-Page transition, we start with the AdS space. A small

black hole appears with negative heat capacity. The heat capacity changes from negatively

infinity to positively infinity at the minimum temperature which corresponds to the maxi-

mum temperature of TNBH = Tm(M = Mm, rs = rm) in our model. Then the large black

hole with positive heat capacity comes out as a stable object. For our noncommutative

black hole, we may consider the thermodynamic process as the inverse Hawking-Page tran-

sition. As a result, the infinite change at rs = rm indicates a thermodynamic behavior of

the gravitating system which appears in the process from the large black hole to the ex-

tremal black hole. We also observe that a thermodynamically unstable region (CNBH < 0)

appears for rs > rm. As a consistent check, we note that in the Hawking regime, CNBH is

consistent with the specific heat of the Schwarzschild black hole CSch = −2πr2
s .

Finally, we introduce the free energy as

FNBH(rs) = M(rs) − TNBH(rs)SNBH(rs)

= M(rs) −
1

4πrs

[

1 − r3
s

4θ
3

2

e−
r
2
s

4θ

γs

]

∫ rs

r0

1

TNBH

dM ′

dr′
dr′. (2.11)

Although we do not know its analytic form, its graph is shown in figure 5 by numerical

computations. As expected, the free energy also has the minimum value at rs = rm = 4.76.
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Figure 4: The solid line: heat capacity CNBH as a function of the black hole radius rs. The

dashed curve is the Schwarzschild case. The horizontal dashed line denotes the initial heat capacity

Ci = −1608(•) for evaporation.
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Figure 5: The solid line: plot of the free energy FNBH as a function of rs. The dashed line is the

Schwarzschild case FSch = M/2 = rs/4.

We find that two free energies take the same form in the Hawking regime. At the critical

regime, two are different. We anticipate that the free energy FNBH is negative at the

critical regime because of positive heat capacity. However, this is positive.

At this stage we would like to compare our results with Nozari and Mehdipour [23].

They insisted that there exist negative temperature, negative entropy, and anomalous heat

capacity in the thermodynamic study of the NBH. They argued that these unusual features

show the failure of standard thermodynamics at the quantum gravity level. However, these

results seems to be incorrect because they did not consider carefully the fact that the black

hole prescription is meaningful only in the range of rs = r0(M = M0) to ∞(M = ∞). The

observer at infinity talks about thermodynamics of the outer horizon. However, he does

not know what happens inside the outer horizon. Our results are correct and consistent

with those for the nonsingular black hole [24].

Finally we describe a thermodynamic process, which is closely related to the evapora-

tion process of the NBH. Let us start with the black hole with mass M = Mi > M0(ri > r0)

in the Hawking regime. In this case we sketch the evaporation process (→) by observing

– 6 –
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thermodynamic quantities: For a process of ri → rm → r0, one has Mi = 8 → Mm →
M0(figure 1); Ti = 0.005 → Tm → T0 with a sequence of T0 < Ti < Tm(figure 2). Inter-

estingly, as is shown in figure 4, we have a change of Ci(= −1605) → Cm(−∞ → ∞) →
C0(= 0.0015). Here we find that the final remnant of extremal black hole at rs = r0 is

thermodynamically stable because of positive heat capacity.

3. Evaporation of the noncommutative black hole

We start with the fact that the NBH looks like the regular solution known as the de

Sitter-Schwarzschild black hole. Hence its causal structure is similar to that of a Reissner-

Nordstrom black hole with the internal singularity replaced by a regular center. It is

known that such a spacetime is unphysical because of the presence of the Cauchy horizon

rC . However, if the NBH evaporates, the Cauchy horizon is no more real than the event

horizon rs. Actually the evaporating process will terminate at the point which corresponds

to the maximum Cauchy horizon and the minimum event horizon (rC = r0 = rs). Hence

we do not need to worry about the presence of the Cauchy horizon. Also it is interesting

to explore the evaporation process of the NBH because of the absence of a singularity.

We guess that the dynamic regions are Vaidya-like with the negative-energy flux during

evaporation.

We begin by reexpressing the metric in eq. (2.2) in terms of ingoing Eddington-

Finkelstein coordinates: (v, r, θ, φ). We introduce the advanced time coordinate

v = t + r∗, r∗ ≡
∫ r

dr′/F (r′). (3.1)

Here r∗ is a generalization of the tortoise coordinate. Using dv = dt + dr/F (r), we obtain

ds2 = −F (r)dv2 + 2dvdr + r2dΩ2
2. (3.2)

Considering the static metric together with Stefan’s law, the mass dependence of the

luminosity is given by

L(M) = σAT 4
NCG (3.3)

with A = 4πr2
s and σ = π2/60 for a single massless field with 2 degrees of freedom [25].

Now we are in a position to compute the mass M(v) of the black hole as seen by a distant

observer at time v by solving the differential equation including first-order in the luminosity,

− d

dv
M(v) = L(M(v)). (3.4)

The improved metric is obtained by replacing the constant M in F (r) with M(v):

ds2
NCV = −F (r, v)dv2 + 2dvdr + r2dΩ2, F (r, v) = 1 − 4M(v)γ

r
√

π
. (3.5)

For M À M0(γ ' √
π/2), eq. (3.5) becomes the Vaidya metric, which was frequently used

to explore the influence of the Hawking radiation on the Schwarzschild geometry [15, 26, 27].

It is a solution to Einstein equation Gµν = 8πTµν , where Tµν describes an inward moving
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Figure 6: The Penrose diagram of the evaporating NBH. Region I is a flat spacetime and region

II is the evaporating NBH spacetime. Region R means a planck-size remnant. The line EH is the

event horizon, the line CH is the Cauchy horizon, and the curve A is the apparent horizon. At

V = V0, an imploding null shell exists to balance the flux of negative energy.

null fluid. In this picture, the decreasing M is due to the inflow of negative energy. The

metric in eq. (3.5) can be regarded as the noncommutativity-corrected Vaidya (NCV)

metric.

It is instructive to ask which energy-momentum tensor Tµν would give rise to the NCV

metric. Computing the Einstein tensor with eq. (3.5), one finds that non-zero components

are

T v
v = T r

r = pr, (3.6)

T r
v =

γṀ(v)

2(π)3/2r2
, (3.7)

T θ
θ = T φ

φ = p⊥. (3.8)

Here the dot denotes the derivative with respect to v. Allowing for M(v) 6= const, the new

feature is given by a nonzero component T r
v which describes the inflow of negative energy

into the black hole for Ṁ < 0. This shows pure radiation, recovering the Vaidya solution

for r2/4 À 1. In the Vaidya case, the ingoing radiation creates a singularity. However, the

center remains regular with de Sitter space. This implies that the noncommutative effects

protect the core.
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Even though F (r, v) is a complicated function of r, both the early and the late stages

of the evaporation process can be described approximately. We assume that a black hole

starts with M(v = 0) > M0 in the Hawking regime. In this case, we have the known result

of the Schwarzschild black hole

TH(M) =
1

8πM
, LSch(M) =

δ

M2
(3.9)

with δ = σ
256π3 . It is easy to solve the differential equation −Ṁ = L(M) for this luminosity.

With M(v = 0) = Mi the solution takes the form

M(v) =
[

M3
i − 3δv

]1/3

. (3.10)

This decreasing mass is valid during the early stage of the evaporation process, as long as

M(v) is well above the minimal mass M0. If one extrapolates (3.10) to small mass, one

finds M(v∗) = 0. This implies that a final explosion with T → ∞ and L → ∞ occurs,

after a finite time of v∗ = M3
i /(3δ). However, this is not possible for the NBH. The final

stage of the evaporation process, where the cold remnant forms, is at the critical regime.

It can be described by those terms which are dominant for M → M0. Using the Taylor’s

expansion of eq. (2.7) at M0 together with eq. (3.3), we obtain the approximate forms:

TNBH(M) ' α(M − M0), (3.11)

LNBH(M) ' β(M − M0)
4. (3.12)

with α = dTNBH/dM |rs=r0
= 3242.87 and β = σAα4 = 2.1 × 1015. Solving −Ṁ = L(M)

with eq. (3.12), one finds

M(v) − M0 =
M1 − M0

[1 + 3β(M1 − M0)3(v − v1)]1/3
(3.13)

where v1 is a time in the critical region and M1 = M(v1). For v → ∞, the difference3 of

M(v) − M0 vanishes as v−1/3. Hence, we have the late stage of evaporation: TNBH(v) ∝
v−1/3 and LNBH ∝ v−4/3. The noncommutativity-corrected black hole spacetime leads

to concrete predictions on the final state of the evaporation process. We note again that

M = M0 is the mass of a cold remnant, which is an extremal black hole with the planck

size [28].

Finally, the whole picture of evaporation process is shown in figure 6. Region I is a

flat spacetime, while at V = V0 an imploding null shell is present.4 Strictly speaking, it

must have a negative tension in order to balance the flux of negative energy on its future

side [29]. Region II corresponds to the evaporating NBH spacetime. The apparent horizon

A is a timelike hypersurface which meets the event horizon at future null infinity in the

Penrose diagram. The null ray of dashed line, which is tangent to the earliest portion of the

apparent horizon, would have been the event horizon if the black hole were not radiating.

The final remnant R of the NBH is an extremal black hole whose inner and outer horizons

have the same radius of rs = rC = r0.

3In the case of quantum-corrected Newton’s constant, it was shown that the difference of (M(v) − M0)

vanishes as v
−1 by using the RG improved Vaidya metric [25].

4
V is the Kruskal advanced time coordinate, defined as V = −e

−κv with κ = 2πTNBH the surface

gravity of the outer horizon.
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4. Discussion and summary

There are a lot of approaches for treating black hole evaporation process. This process

is a quantum gravitational effects and its understanding provides a suitable framework

toward a complete formulation of quantum gravity. In this work, we have focused on

the thermodynamic approach to the final stage of NBH evaporation. Our results and

corresponding figures indicate stable features when the mass of the NBH becomes planck

scale. We have obtained a maximum temperature TNBH = Tm that the NBH can reach

before cooling down to absolute zero (TNBH = T0). Moreover, the entropy is zero at

M = M0 and the heat capacity is positive at the critical region. These imply that the

final remnant is a thermodynamically stable object. The thermodynamic process is closely

connected to the evaporation process using the NCV metric. In this case the backreaction

effect is trivial because the temperature approaches zero (not divergent) as M → M0.

Finally, we have shown that the coordinate coherent approach to the noncommutativity

can cure the singularity problem at the final stage of black hole evaporation.
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